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Using historical data to estimate bumble bee occurrence: Variable trends 
across species provide little support for community-level declines 
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A B S T R A C T   

Bumble bees are globally important pollinators, especially in temperate regions, and evidence suggests that many 
species are declining. One recent high profile study by Soroye et al. (2020) applied occupancy models to dated 
historical collection data to quantify declines across North America and Europe. The authors modelled 66 species 
across a set of sites spanning both North America and Europe, rather than confining species to sites where they 
might be expected to occur. In addition, they inferred non-detections for time intervals where there is no evi
dence that the site was visited (by forcing every site to have exactly 3 visits in each era). We use simulated data to 
(i) investigate the validity of methods used in that study and (ii) test whether a multi-species framework that 
incorporates species’ ranges and site visitation histories produces better estimates. We show that the method 
used by Soroye et al. (2020) yields biased estimates of declines, whereas our framework does not. We use such a 
model to provide revised and appreciably lower estimates for bumble bee community declines, with species- 
specific trends more closely matching classifications from IUCN. The species level trends we provide can help 
inform future species-at-risk assessments. Well-parameterized occupancy models may be a powerful tool for 
assessing species-wide trends using curated historical collection data.   

1. Introduction 

Bumble bees are important globally for both natural and agricultural 
pollination services, as their large bodies and thick hair make them 
particularly efficient pollinators (Javorek et al., 2002; Williams et al., 
2014). There is mounting evidence that at least some species have 
declined significantly (Goulson et al., 2008; Cameron et al., 2011; 
Graves et al., 2020); reasons are multifold and depend on species and 
location. Declines have been linked to habitat loss, agricultural inten
sification, pathogen transmission, and climate change (Cameron and 
Sadd, 2020), and several high profile articles have attempted to identify 
drivers of community change across many bumble bee species (Kerr 
et al., 2015; Miller-Struttmann et al., 2015; Soroye et al., 2020; we note 
that some of these publications have also been challenged, e.g., see de 
Keyzer et al., 2016). Of these, the recent analysis by Soroye et al. (2020) 
applied occupancy models to a historical data set in an effort to test 
whether changes in species occurrence are linked to changes in local 
climatic conditions. They concluded that precipitous declines across 
both North America and Europe are, indeed, being driven by climatic 
shifts. If true, this is an alarming and important finding. This study was 

ambitious both in the number of species and the spatial extent. However, 
the implementation of the occupancy models used may have yielded 
biased conclusions. 

Occupancy models are a relatively new set of methods that have 
quickly grown in popularity and application (MacKenzie et al., 2002, 
2006; Royle and Dorazio, 2008). These models, which are a derivative of 
mark-recapture models, consider a set of sites and estimate a species’ 
average probability of being at any particular one of them (i.e., a 
number, referred to as “occupancy”, that is between 0 and 1). Critically, 
this approach attempts to account for potential detection bias in the 
observations made at those sites (e.g., if detection probability is low, 
actual occupancy is usually estimated to be higher than it would be if 
inferred from raw data). Numerous methodological advances have 
expanded the scope and applicability of occupancy models. For 
example, multi-species occupancy models combine occurrence data 
from multiple species to enable identification of community-level trends 
(Iknayan et al., 2014). In contrast to post hoc comparisons of output 
from single-species models, in a multi-species framework, uncertainty in 
inferences at the species level propagates up to uncertainty in inferences 
at the community-level, and information from community-level trends is 
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also shared across species (Devarajan et al., 2020). In these ways, multi- 
species models may be both more transparent with regard to uncer
tainty, and more powerful at detecting real trends. 

There are many community science and historical data sets with 
species recorded at known places and times and, in theory, occupancy 
models applied to these data could assess whether certain species are 
now more or less likely to be present across their historical range. 
However, the non-standardized methods typical of opportunistic col
lections make the data sets potentially problematic for occupancy 
models, as these models typically require standardized repeat visits over 
short time intervals (see Tingley and Beissinger, 2009 for a summary of 
the inherent analytical limitations associated with different types of 
historical data). To get around these assumptions, researchers have 
recently developed creative methods for analyzing historical data sets 
using an occupancy framework (e.g., Tingley and Beissinger, 2013; 
Frishkoff et al., 2014; Isaac et al., 2014; Woodcock et al., 2016; Iknayan 
and Beissinger, 2018; Outhwaite et al., 2018; van Strien et al., 2019; 
Graves et al., 2020; Soroye et al., 2020). 

Approaches to deal with observation selection and changing sam
pling intensity through time and space have varied. For example, when 
using historical data, authors have directly re-surveyed sites that were 
surveyed in historical periods (Moritz et al., 2008; Tingley and Beis
singer, 2013; Iknayan and Beissinger, 2018), or constrained analyses to 
locations where two or more sampling events occurred within a single 
calendar year (Graves et al., 2020) or locations that received visits in 
multiple years over the duration of the study (van Strien et al., 2013a; 
Isaac et al., 2014; Outhwaite et al., 2019). This replication is important 
for ensuring that models can estimate both occurrence and detection 
probability. However, depending on the availability of data, restricting 
to a subset of data can reduce the power of a study by reducing sample 
size (Isaac et al., 2014). 

Given that opportunistic community science sampling and historical 
museum records only contain presence data, species’ non-detections 
need to be inferred. One potential way to do this is to infer a non- 
detection for a particular species if a different species was observed at 
that same site on the same date (van Strien et al., 2013a; Kamp et al., 
2016; Powney et al., 2019). The other species would likely need to be in 
the same taxonomic group (Outhwaite et al., 2019) but may or may not 
be considered to have been observed by the same observer (van Strien 
et al., 2010). Critically, each non-detection for each species must be 
assessed for each time interval at each site. An additional problem when 
applying occupancy models to opportunistic or historic data is that 
sampling effort may differ between time intervals. To account for this, 
authors have added covariates to detection probability that aim to 
capture potential sources of this variation (e.g., one might include the 
length of the list of all species recorded during a visit, aka “list length,” 
as a proxy for sample effort; Isaac et al., 2014; Szabo et al., 2010; Kamp 
et al., 2016). A further step might be to filter the data by removing visits 
with only a single observation (Kamp et al., 2016) or to constrain ana
lyses only to species that meet some minimum number of observations 
(Woodcock et al., 2016). 

These methodological approaches have been primarily applied to 
atlases or opportunistic community science data (van Strien et al., 2010, 
2013a, 2013b; Isaac et al., 2014; Kamp et al., 2016; Woodcock et al., 
2016; Altwegg and Nichols, 2019; Outhwaite et al., 2019; Powney et al., 
2019; Outhwaite et al., 2020). Such data tend to be collected by vol
unteers and, particularly for birds, are relatively well-structured (Gib
bons et al., 2007). Historical museum records, on the other hand, present 
two additional problems. First, because museum records are often 
incomplete subsets of field collections, it is even more challenging to 
infer when sampling actually occurred (i.e., one cannot necessarily 
determine from museum specimens alone when collectors went to 
sampling locations, because common species are sometimes not curated 
(Ascher et al., 2020)). Second, it is unclear how to define “sites” over 
which species occupancy can then be modelled (i.e., over what spatial 
resolution should we lump observations together and then, given a 

spatial resolution, which sites should be modelled for which species, e. 
g., how do we account for different species’ ranges). Studies are now 
starting to investigate this question (Jönsson et al., 2021). 

Authors have taken multiple approaches to site selection when 
modelling communities where many sites are outside the realistic range 
for many species (e.g., in a broad sense, sites on one continent are 
outside the range of a species not found on that continent). Frishkoff 
et al. (2014) used a multi-species framework that constrained bird 
species occupancy, such that species were not modelled in geographic 
regions where they had never been detected, and Graves et al. (2020) 
modelled the western bumble bee (Bombus occidentalis) using a single- 
species framework where each of four regions in western North Amer
ica were modelled separately. Another approach is to instead include 
spatial covariates for modelling occupancy, such as climate or Cartesian 
coordinates (Dennis et al., 2017; Altwegg and Nichols, 2019). 

It is in this methodological setting that Soroye et al. (2020) devel
oped a method to estimate changes in species occupancy using historic 
museum specimen records. Specifically, Soroye et al. (2020) used single- 
species models to model each of 66 bumble bee species across a spatial 
grid of sites that spanned Europe and North America, and used no 
covariates for occupancy. Soroye et al. (2020) divided historical obser
vations across a spatial grid into three time period subsets (“time in
tervals”) for each grid cell (“site”) in each of two time periods (“eras”, 
historical versus modern) that differed in length (75 vs 15 years, 
respectively). The authors only considered sites where at least one 
specimen of any of their target species had been collected and then, for 
those sites, inferred non-detections for all other species and/or time 
intervals. They subsequently modelled each species across all considered 
sites and then assessed occupancy change, per species, at the subset of 
sites where that species had been detected. In doing this, the authors 
implicitly assumed 1) that North American species might have been 
present at European sites, but had simply gone undetected, and vice 
versa for European bees at North American sites, and 2) that every site in 
their final data set had been visited in every time interval. Thus, Soroye 
et al. (2020) took steps to deal with the challenges that arise when 
applying occupancy models to historical data. However, rather than 
validate their method first using simulated data, they applied it, un
tested, to field data. For the reasons mentioned above, which we explore 
further below, their approach was not sufficient and, in fact, yielded 
biased results. 

We use simulated data to identify if and how temporal patterns in 
detection, visitation, and/or occupancy mediate biases in inferred oc
cupancy that arise when species are modelled across sites outside their 
ranges or across time intervals where visits did not occur. Simulations 
are useful in these circumstances, because we can explore model per
formance in the context of known true values of the parameters that 
underlie trends. In the context of our simulation results, we then revisit 
one main question posed by Soroye et al. (2020), namely the extent to 
which bumble bees have declined in North America and Europe. We find 
that inferences about community-level bumble bee decline are strongly 
impacted by these particular modelling decisions. Overall, occupancy 
models that best mitigate the biases we uncover estimate notably weaker 
community-wide declines for bumble bees in both North America and 
Europe. Revised estimates for species-specific declines also show 
reduced bias and, thus, are likely closer to true values. Such revised 
values can potentially better inform conservation efforts, and we hope 
our results will help guide future conservation studies that make use of 
historical observations. 

2. Methods 

2.1. Data simulation 

We simulate species occupancy for a community of N species over J 
sites across K eras (eras could be years or ranges of years). We further 
assume that, in era k, site j is visited up to I times. We assume that each 
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species occupies a different, potentially overlapping, subset of the J 
sites. Specifically, species i potentially occupies sites Ri = {si,1, si,2,⋯, 
si,ri}, where ri ∈ {1,2,⋯,J}. We refer to Ri as the “range” of species i and 
the sites within Ri as the “relevant sites” for species i. Because our goal 
here is not to simulate species’ ranges, we set N, J, and Ri (for each i) to 
match values for the bumble bee data that we subsequently re-analyze. 

We simulate occupancy for each species only across the sites in that 
species’ range. For species i, we set occupancy to zero for all sites j ∕∈ Ri. 
For site j ∈ Ri, we draw occupancy in era k from a Bernoulli distribution 
with probability ψ i,j,k, where 

ψi,j,k = expit
[
ψ0 +ψ sp[i] +ψera[i] × (k − 1)

]
(1) 

Here, ψ0 is the baseline occupancy across species, ψsp[i] is a random 
species-specific intercept, and ψera[i] is a random species-specific effect 
of era. This latter term allows species to vary in their temporal occu
pancy trends. Note that we use k − 1 above to facilitate interpretation of 
parameters when there are only two eras. We further assume that both 
ψsp and ψera are normally distributed, such that: 

ψ sp[i] ∼ N
(
0, σψ ,sp

)
(2)  

ψera[i] ∼ N
(
μψ ,era, σψ ,era

)
(3) 

Here, σψ,sp specifies the variation in occupancy across species, μψ,era 
specifies the mean effect of era on species occupancy (positive/negative 
values imply that species are, on average, increasing/decreasing in oc
cupancy through time), and σψ,era specifies the variation in temporal 
species-specific occupancy trends. 

Among occupied sites, a species can only be detected at a site if that 
site is visited. We modelled site visitation in two ways. First we 
considered a scenario where each site is visited I times in each era (no 
missing visits). Second, we considered a scenario where not every site 
received a visit in every time interval (missing visits). Here, site visits for 
each of the I intervals in era k to site j were drawn from a Bernoulli 
distribution with probability 

vj,k = expit[v0 + vera*(k − 1) ], (4)  

where v0 is baseline probability of visitation (on the linear scale) and vera 
is an effect of era that allows site visitation probability to change sys
tematically between time periods. We then simulate detections for each 
species only across the time intervals where visits occurred to the sites 
that it occupies. Specifically, for species i, if site j ∈ Ri and species i 
occupies that site, we draw species’ detections across the visits that 
occurred in era k from a Bernoulli distribution with probability pi,j,k, 
where 

pi,j,k = expit
[
p0 + psp[i] + psite[j, k] + pera ×(k − 1)

]
, (5)  

where p0 is the baseline probability of detection across species (on the 
linear scale), psp[i] is a random species-specific intercept, psite[j,k] is a 
random site-specific intercept that varies by era, and pera is an overall 
effect of era. The random site-specific intercept allows detection prob
ability to differ independently across sites and between eras; for his
torical data, this allows the model more flexibility and helps account for 
the fact that sites likely differ in sampling effort across space and/or 
time. The fixed effect of era, pera further allows detection probability to 
change systematically between time periods. We assume that both psp 
and psite are normally distributed, such that: 

psp[i] ∼ N
(
0, σp,sp

)
(6)  

psite[j, k] ∼ N
(
0, σp,site

)
(7) 

Here, σp,sp specifies the variation in detection across species and 
σp,site specifies the variation in detection across sites and eras. 

2.2. Models 

We compare performance of five (of many possible) models on data 
sets simulated using the above procedure in order to identify which 
models provide the most robust inference for historical data akin to 
those analyzed in Soroye et al. (2020). 

1. SSall,all (the model used in Soroye et al., 2020): We first model oc
cupancy for each species across all J sites and all I intervals using N 
separate single-species (SS) models. Modelling all intervals assumes 
that every site was visited in every time interval. In each model, we 
allow occupancy and detection probability to independently increase 
or decrease through time. Using the posterior model estimates for the 
latent site-specific occupancy states, we calculate the proportional 
increase or decrease in occupancy for each species across only the 
sites where that species was detected at least once (but note that 
posteriors are derived from models that were run across all sites). We 
then combine these species-specific estimates to calculate the mean 
proportional change in occupancy across species. We calculate this a 
posteriori latent state metric in order to reproduce the methods of 
Soroye et al. (2020). For the multi-species models described below, 
we calculate community change in occupancy directly from model- 
estimated parameter values.  

2. MSall,all: We use a multi-species (MS) framework to model occupancy 
of each species across all J sites and across all I intervals. This as
sumes all sites were visited in each of the I intervals. We include this 
model for completeness, but do not examine it in detail due to its 
relatively poor performance.  

3. MSrange,all: We use a multi-species framework to model occupancy of 
each species only across the sites in its range (i.e., species i is 
modelled across sites Ri only) and across all I intervals. This assumes 
all sites were visited in each of the I intervals. 

4. MSrange,detected: We use a multi-species framework to model occu
pancy of each species only across the sites in its range and only 
across intervals where at least one species was detected and so we 
have positive evidence that the site was, indeed, visited. Occupancy 
models for unstructured data typically only model visits where at 
least one species was detected (van Strien et al., 2010, 2013a; Kamp 
et al., 2016; Outhwaite et al., 2019; Powney et al., 2019).  

5. MSrange,visits: We use a multi-species framework to model occupancy 
of each species only across the sites in its range and only across the 
intervals where visits actually took place. This model represents a 
best-case scenario where we have full information about both spe
cies’ ranges and visitation history and, thus, can include sites that 
have no recorded detections for any species. For historical data sets, 
acquiring such information may require substantial effort, if it is 
even possible. 

For the multi-species models, we allowed for maximum biological 
realism by allowing both occupancy and detection probability to differ 
between species and also to increase or decrease through time, i.e., by 
fitting fixed and random effects on occupancy and detection probability 
that mirror the equations specified above for data-simulation (Eq. (1) for 
occupancy and Eq. (5) for detection). The only differentiating factor 
between these models is the subset of sites and time intervals that are 
included (see Fig. 1 for a schematic). To account for potential differences 
in effort across time intervals, and for consistency with Soroye et al. 
(2020), we also include the total number of specimens collected during a 
time interval as a predictor on detection probability in SSall,all (but note 
we did not include it in subsequent analyses for the reasons given 
below). While this measure was intended to serve as a proxy for “effort”, 
and indeed many authors use it to account for differences in sampling 
effort (Szabo et al., 2010; Isaac et al., 2014; Kamp et al., 2016; Wood
cock et al., 2016; Outhwaite et al., 2019), we note that because detection 
probability is calculated using a logit link function, “zero effort” as 
modelled in Soroye et al. (2020) does not translate into a zero 

L.M. Guzman et al.                                                                                                                                                                                                                             



Biological Conservation 257 (2021) 109141

4

probability of detection, but rather a detection probability equal to expit 
(x) where x denotes the intercept probability of detection on the linear 
scale. This problem manifests when lists of length zero (e.g., time in
tervals where visits either did not happen or did happen, but yielded no 
detections) are included in the analysis. Previous analyses that included 
list-length as a model predictor would not encounter this problem, as 
they typically only include samples where a “list” actually existed, 
which implied at least one species detection (Kamp et al., 2016). The 
random effects in our multi-species models here render such a step un
necessary and, thus, we include no such term for those models. 

We use uninformative priors for all parameter values (normal dis
tributions for ψ0, μψ ,era, p0, pera, v0, vera and uniform priors for σψ,sp, 
σψ,era, σp,sp, σp,site). JAGS code for data simulation and all model code is 
available at https://github.com/lmguzman/occupancy_bbees. 

2.3. Model tests 

We assess models by quantifying their performance when inferring 
the parameter values under which the data were simulated, as well as 
their performance inferring species-specific trends. We consider a range 
of scenarios of increasing, decreasing, or constant detection and/or site 
visitation and/or occupancy probability through time. Because com
parisons between “historical” and “modern” time periods are of partic
ular relevance to conservation (e.g., Tingley and Beissinger, 2013; 
Iknayan and Beissinger, 2018; Soroye et al., 2020), we focus here on the 
case of two time periods (or two “eras” in the terminology of our model). 

2.4. Re-analysis of bumble bee declines 

Incorporating insights from our analyses of simulated data sets, we 
re-analyze the subset of the data analyzed by Soroye et al. (2020) for 
North America and Europe. We use a multi-species framework, consid
ering each continent separately and, within a continent, limiting each 
species to sites within an inferred range. We infer a species’ range to be 
the set of all sites within the convex hull that includes all sites where that 

species has been detected at least once (see Fig. S1 for a sample range for 
a single species). We acknowledge that there are many alternative ways 
one might model species’ ranges and we have used the simplest one 
extracted from the data set. In this multi-species framework we also 
include only visits where at least one specimen was collected (i.e., we 
use MSrange,detected, and thereby assume that, if no bumble bee of any 
species in the dataset was collected at a site during a specific time in
terval, no visit occurred). 

3. Results 

3.1. Model performance tests 

We find that, when detection probability is not constant across time 
periods, some models produce biased estimates of community-wide 
temporal changes in occupancy. Most notably, modelling species 
across all sites and all potential visits using the single-species framework 
presented in Soroye et al. (2020) (SSall,all) incorrectly identifies changes 
in detection as evidence for changes in occupancy (Fig. 2). A multi- 
species approach that models all sites and all time intervals (MSall,all) 
yields less biased estimates of changes in occupancy, but strongly biased 
estimates of mean occupancy (Fig. S2, Table 1). In contrast, multi- 
species frameworks that model each species across the sites in their 
respective ranges (MSrange,all, MSrange,detected, MSrange,visits) yield much 
improved estimates of occupancy change when detection probability 
changes through time (yellow points in Figs. S3, S4, S5). Because 
restricting models to species’ ranges performs better than using all sites, 
we only investigate effects of visitation history (next) for the multi- 
species models that incorporate species’ ranges. 

Differences in visitation frequency across time can also bias occu
pancy estimates. Specifically, a decreasing frequency of visits through 
time leads to similar biases as decreasing detection probability for 
SSall,all (Fig. 2). Multi-species models that include all of the potential 
time intervals (MSrange,all) also yield biased estimates of both mean oc
cupancy (ψ0) and temporal trends in occupancy (μψ,era) (blue points in 

Fig. 1. Schematic illustrating the different classes of 
visits, with respect to species i. Each row corresponds 
to one of the J total sites (here, J=20) across K=2 
eras and cells within each row correspond to I=3 time 
intervals where visits to those sites can potentially 
occur (e.g. historic Era 1 vs. modern Era 2). Potential 
visits to sites that are within the range of species i, Ri, 
are outlined in yellow. Each model we present con
siders a different combination of sites and time in
tervals, as shown in smaller panels, where black 
indicates the modelled sites and time intervals. Spe
cifically, SSall,all and MSall,all model every species over 
every site and every time interval (all cells), MSran

ge,all models each species over every time interval at 
the sites in that species’ range (all cells outlined in 
yellow), MSrange,detected models each species at every 
site in that species’ range over every time interval 
where at least one species was detected, (all red and 
orange cells outlined in yellow), and MSrange,visits 
models each species over every actual visit to a site in 
that species’ range (all red, orange, and dark grey 
cells outlined in yellow). (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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Fig. S5). However, multi-species models that consider only time in
tervals where visits actually happened (MSrange,visits) or time intervals 
where at least one species was detected (MSrange,detected) yield reliable 
estimates of mean occupancy (ψ0) and temporal trends in occupancy (μψ, 

era) (blue points in Figs. S3, S4). 
While both MSrange,detected and MSrange,visits correctly estimate pat

terns in occupancy when visitation declines through time, only the latter 
correctly estimates detection probability (Fig. S6). MSrange,detected 
consistently overestimates mean detection probability (p0) and the 
change in detection probability (pera) when occupancy also changes 
through time (Fig. S7). Thus, obtaining correct estimates of both occu
pancy trends and detection probabilities requires information about the 
actual visitation history at each site (for a summary of all the model 
comparisons see Table 1). 

Model performance for individual species - quantified by calculating 
the root mean square error (RMSE) for model-estimated species-specific 
occupancy trends - is best (lowest error) for multi-species models when 
species are only modelled across their respective ranges, and over the 
time intervals where visits actually occurred (MSrange,visits) or intervals 
where at least one species was detected (MSrange,detected) (Fig. S8). Error 

is high when using the single-species metric of Soroye et al. (2020) 
(SSall,all) or when species are modelled over their ranges and all time 
intervals in a multi-species framework (MSrange,all). 

3.2. Re-analysis of bumble bee declines 

Our analyses on simulated data sets show that using a multi-species 
framework to model each species across its range produces reliable es
timates of temporal patterns in occupancy when actual site visitation 
history is known (MSrange,visits) or when it is inferred based on species’ 
detections (MSrange,detected). Because we do not know the actual site 
visitation history for bumble bees, we used the latter model to re- 
evaluate temporal trends in bumble bee occurrence. We find that the 
magnitude of estimated species’ declines is appreciably lower for bees 
on both continents: for North America, we find a 5% decline with a 95% 
BCI = [− 20%,12%], compared to Soroye et al. (2020) who estimated a 
46% decline, SE = 3%; for Europe we find a 6% decline, 95% BCI =
[− 21%,2%], compared to Soroye et al. (2020) who estimated a 17% 
decline, SE = 5% (see Fig. 3 for a graphical comparison of the per-species 
declines and Table 2 for a summary of results, and Table S1 for a full 
summary of model-estimated parameters). Credible intervals for esti
mated declines on both continents include zero and, therefore, we 
cannot exclude the possibility that mean bumble bee occupancy has not 
changed between the periods. Until we have better estimates of actual 
site visitation for these data, identifying reliable trends in detection is 
not possible with the models we have considered here. 

Soroye et al. (2020)’s estimated species-specific declines are nega
tive and exceed 10% for all but one species (Bombus terrestris which does 
not occur in North America, see paragraph below) in North America, 
many of which are classified as stable by the IUCN. SSall,all systematically 
biased estimates of change in occupancy downwards when visitation 
declined through time (Fig. 2), and we find evidence for such a decline in 
visitation between eras in North America (changes in visitation are 
shown in Fig. 4 and discussed further below). In contrast, our multi- 
species approach produces estimates more in line with the IUCN clas
sifications (Figs. 5, 6), with notable increases for species that are known 
to exhibit modern range expansions (e.g., B. impatiens with several 
recent western introductions, Looney et al., 2019; Palmier and Sheffield, 
2019; B. bimaculatus, with indication of both an eastward and westward 
range expansion from modern community science observations, The 
Xerces Society, Wildlife Preservation Canada, York University, Univer
sity of Ottawa, The Montreal Insectarium, The London Natural History 
Museum, BeeSpotter., 2017; B. crypatarum with evidence for a westward 
range expansion, Owen et al., 2012; and B. hypnorum colonizing the 
mainland of the United Kingdom, Crowther et al., 2019) or that have 
been assessed as increasing in previous studies (e.g., B. bimaculatus, 
B. griseocollis, B. impatiens, B. perplexus, Colla et al., 2012; Bartomeus 
et al., 2013). We estimate the most dramatic decline in North America 
(73%) for B. bohemicus, which is a specialized social parasite and, 
therefore, expected a priori to experience faster and steeper declines as 
an indicator or precursor to declines in its host(s). B. bohemicus is listed 
as Critically Endangered by IUCN for its North American range. It has 

Fig. 2. The metric used to estimate mean percent change in occupancy by 
Soroye et al. (2020) yields biased values when detection or visitation proba
bility are not constant through time. The dashed grey line indicates the true 
change in occupancy for simulated data (μψ,era=0, in all cases). Points and 
vertical bars show means and standard errors across 10 simulated data sets. 
Because these points are means across multiple individual occupancy models, 
we cannot easily present 95% Bayesian Credible Intervals here, as we do for 
other figures. Other parameter values were: I=66 species, J=1905 sites, K=2 
eras, I=3 time intervals, σψ,sp=0.5, σψ,era=0.2, p0 = − 0.5, σp,sp=0.5. Values on 
the x-axis can be converted to mean change on the probability scale as expit(p0 
+ x) − expit(p0). 

Table 1 
Summary of the model results where + is overestimated, − is underestimated and = is accurately estimated.  

Model Missing visits Bias in missing visits Mean occupancy Change in occupancy  Mean detection Change in detection  

SSall,all No   + and − Fig. 2    
Yes No  + and −
Yes Yes  + and −

MSall,all No  − + and − Fig. S2    
MSrange,all Yes No + = Fig. S5    

Yes Yes + +

MSrange,detected Yes No = = Fig. S3 + + and −
Yes Yes = = + + and − Fig. S7 

MSrange,visits Yes No = = Fig. S4 = =

Yes Yes = = = = Fig. S6  
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confirmed breeding records only in colonies of B. affinis and B. terricola, 
and likely also parasitizes B. occidentalis (Williams et al., 2014), all 
species also estimated to be exhibiting major declines. In contrast, we 
estimate the most dramatic decline in Europe (78%) for B. pomorum, not 
a social parasite but a species extirpated from the UK and with evidence 
supporting a decline at its northern range limits (Rasmont and Iserbyt, 
2010; Jeffers, 2017). Our model-estimated declines for this species 
suggests the IUCN Red List status of “vulnerable” may need to be reas
sessed (IUCN, 2020). Our species-specific responses for bees in Europe 
largely agree with those estimated by Soroye et al. (2020) (Fig. 5). This 
finding is potentially attributable to more consistent site visitation be
tween time periods in Europe; for North America 64% of unique site ×
time interval combinations comprised at least one species’ detection in 
the historical era, compared to only 27% in the modern era, whereas, for 
Europe 65% comprised at least one detection in the historical era, 
compared to 55% in the modern era (Fig. 4). Our analyses on simulated 
data showed that when visitation and detection are constant in time, 
SSall,all can produce reliable species-specific responses and, for Europe, 
at least one of these conditions appears to hold. 

We also note that the inclusion of the European B. terrestris and 
B. lucorum in the North American analyses of Soroye et al. (2020) was 
likely an error, and both species have been excluded from our North 
American analyses (note these species are not included in Williams et al., 
2014). Commercial rearing and international trade of B. terrestris has led 
to invasive populations establishing outside of their native European 
range (e.g., South America, Torretta et al., 2006, and Japan, Inoue et al., 
2008), but B. impatiens replaces B. terrestris in North America and 
importation of the exotic B. terrestris into North America is not permitted 
(Goulson, 2010). B. lucorum is a member of a cryptic European species 
complex, and at one time taxonomists believed that it occurred in 
northwestern North America. A series of taxonomic revisions now 

indicate that any B. lucorum recorded in North America are likely 
B. cryptarum, a separate species in the same subgenus that is known to 
occur in both North America and Europe (Scholl et al., 1990; Williams, 
2011; Williams et al., 2012). Excluded observations of B. lucorum, all but 
one from the historical era, may thus spuriously contribute to the 
marked increase in occupancy we found for B. cryptarum in North 
America. Though range expansion has been documented for this species 
(Owen et al., 2012), the modelled increase of 71% is likely inflated. 
Analyses for North American bees using our revised methods on the 
identical set of species as considered in Soroye et al. (2020) does not 
change any of our conclusions here (see Table S2). 

4. Discussion 

Using simulated data, we found that the single-species occupancy 
models set up and parameterized like the one recently developed by 
Soroye et al. (2020) can incorrectly attribute changes in site visitation 
pattern and/or changes in a species’ probability of detection to changes 
in that species’ probability of occupancy. In other words, the model of 
Soroye et al. (2020) fails to accomplish the primary goal of occupancy 
models, which is to estimate changes in occupancy that explicitly ac
count for changes in detection probability. In contrast, we found that the 
multi-species model that explicitly incorporate species’ ranges and 
detection histories produce reliable estimates of temporal trends in oc
cupancy, even when visitation to these sites is inferred based on species’ 
detection histories. Such models do yield biased estimates of species’ 
detection probabilities, but appear to have comparably minimal effects 
on estimates of species’ temporal trends in occupancy. 

Using this framework, we re-analyzed the data presented in Soroye 
et al. (2020), and found much of their estimated declines in North 
America are likely the result of a statistical artifact arising from temporal 
patterns in detection probability and site visitation. As expected from 
multi-species models, uncertainty associated with our community-level 
estimates was also greater than that reported in Soroye et al. (2020) for 
both continents. 

Our multi-species analysis also seems to provide better estimates of 
species-specific trends when detection probability is not constant 
through time. While we did not explicitly investigate a single-species 
framework that incorporates species’ ranges and site visit histories, we 
note that using a multi-species approach allowed us to model species 
with few records. For example, in North America, Bombus distinguendus 
was only present in two sites in the current era. Robustness to the in
clusion of rare species is a known advantage to multi-species occupancy 
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Fig. 3. Multi-species versus single species changes in 
bumble bee occupancy across two continents. Grey 
bars correspond to model results presented in Fig. 2 
in Soroye et al. (2020), whereas green bars show es
timates from a multi-species model where species are 
modelled across sites in their inferred ranges and time 
intervals where at least one species was detected 
(MSrange,detected). Points at the top of each panel 
indicate mean across species and horizontal bars 
indicate standard error (grey) or 95% Bayesian 
Credible Interval (green). Note that, in contrast to 
Soroye et al. (2020), our analysis for North America 
does not include Bombus terrestris or Bombus lucorum 
(neither is known to inhabit that continent) but does 
include Bombus distinguendus (the authors removed 
B. distinguendus from their analysis after estimating a 
>100% increase in occupancy). Because there are 
only a small number of records from these species, 
our conclusions are largely unchanged if we consider 
the same species set as Soroye et al. (2020) (see 
Table S2). (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   

Table 2 
Estimated proportional changes in occupancy for data presented in (Soroye 
et al., 2020) using the method presented in that paper (SSall,all), as well as a 
multi-species model where species are modelled over sites in their inferred 
ranges and time intervals where at least one species (from any of those 
modelled) was detected (MSrange,detected).    

Δ Occ SE 95% BCI 

North America SSall,all  − 45.6 3.4 – 
MSrange,detected  − 4.8 – [− 20.1,11.9] 

Europe SSall,all  − 16.5 4.9 – 
MSrange,detected  − 6.3 – [− 20.6,1.8]  
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Historical Current

3
2
1
0

Fig. 4. Number of time intervals where a visit was known to have occurred (e.g., time intervals with recorded species’ detections) at each site in each era on each 
continent. Red indicates that no species was detected at the corresponding site in that era and, thus, no visit may have actually happened in any of the three time 
intervals; light grey indicates that only one of the three time intervals was known to have contained a visit, and so on. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Species-specific estimates of occupancy 
change from Fig. 3, coloured by IUCN Red List pop
ulation trend. The multi-species estimates agree with 
Red List trends on both continents. Estimates from 
Soroye et al. (2020), SSall,all, generally agree for 
Europe, but always overestimate declines in North 
America, likely due to changing probability of site 
visitation there. We removed Bombus terrestris, 
Bombus lucorum, from the North America panel, for 
reasons given in the Fig. 3 caption and Bombus dis
tinguendus because Soroye et al.’s method yields a 
700% increase, which did not fit in this plot. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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models (Zipkin et al., 2009). In North America, Soroye et al. (2020) 
estimated that all but two species have experienced major declines and, 
of these two, they omitted one from their estimated average declines 
(Bombus distinguendus, likely omitted for the reason given above) and the 
other is not actually known to occur in North America (Bombus terrest
ris). These trends across species are at odds with IUCN Red List popu
lation trend reports (IUCN, 2020). Our multi-species estimates, which 

are more conservative in North America, are more consistent with IUCN 
population trends. While we do not find major overall declines across all 
species, we do find that many individual species appear to be in trouble. 
This highlights the fact that presenting the “mean decline” across a 
community may not be useful for conservation applications, as increases 
in some species effectively cancel declines in other species. This may 
lead to inappropriately deprioritizing communities composed of range- 

Fig. 6. Species-specific estimates of occupancy change. Estimates from Soroye et al. (2020), SSall,all, generally agree for Europe, but always overestimate declines in 
North America, likely due to changing probability of site visitation there. We removed both Bombus terrestris and Bombus lucorum from the North America panel, for 
reasons given in the Fig. 3 caption. 
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expanding common species that are replacing declining rare species (i. 
e., biotic homogenization, McKinney and Lockwood, 1999). Our revised 
estimates highlight specifically which North American species likely 
need conservation resources, and provide critical information for 
designing meaningful management actions. In contrast, in Europe, 
where site visitation did not change appreciably, both our and Soroye 
et al. (2020)’s estimates are more consistent and largely match IUCN 
Red List population trend reports. 

Estimated declines in actual visitation and/or detection probability 
in North America could be, at least in part, a consequence of Soroye et al. 
(2020)’s decision to use time intervals that comprise different temporal 
durations in their “historical” baseline and “current” periods (see Ascher 
et al., 2020, for additional commentary related to this potential bias). 
Specifically, their baseline encompassed 75 years, split into three 25 
year sample intervals, whereas the current era encompassed 15 years, 
split into three 5 year sample intervals. Sample interval durations were 
chosen so that their measure of overall sample effort did not differ 
greatly between eras. Interestingly, while the number of species’ de
tections in the modern and historical periods did not differ dramatically, 
the distribution of detections across space in the modern era are much 
less evenly dispersed, with large portions of central North America and 
Mexico completely devoid of any records (Fig. 4). Further, 5 years of 
samples in recent years may not be equivalent to 25 years of samples in 
historic years. For example, a longer sample interval provides greater 
opportunity to detect species that fluctuate in abundance through time, 
which could bias estimates of occupancy in the longer time intervals 
upwards. While these sample periods were also used in Europe, oppor
tunistic datasets there tend to be more complete. For example, the Bees, 
Wasps and Ants Recording Society is a unique dataset with a large 
coverage (Woodcock et al., 2016). In addition, since many opportunistic 
datasets are biased towards human population density and infrastruc
ture (Geldmann et al., 2016), we would expect Europe to be more 
consistently sampled across time than North America (keeping in mind 
that in the analyses presented here and in Soroye et al. (2020), modern 
time intervals are 5× shorter than historical ones). 

Overall, we found that modelling species across their ranges using 
multi-species occupancy models yields accurate estimates of temporal 
patterns in occurrence. However, species ranges are not always available 
and can change through time. Here, we approximated a species’ range 
by including all sites within a convex hull drawn around the set of sites 
where that species had been detected at least once. Alternatively, 
explicitly incorporating ecological variables as predictors on occupancy 
and/or detection, such as latitude/longitude, elevation, climate, or eco- 
region will also help prevent spurious inferences due to the inclusion of 
modelled sites that are outside a species’ range (Graves et al., 2020). 
Spatial effects have been studied extensively in joint species distribution 
models and results from the work of SDMs could likely also be leveraged 
to provide better bounds on species’ ranges for occupancy models 
applied to historic data (Pollock et al., 2014; Tobler et al., 2019). 

For the data we consider here, modelling only time intervals where at 
least one species in the data set was detected appears to function as a 
robust work-around for a lack of information about true visitation his
tory. Ideally, one would use additional information to make inferences 
about the true visit history. As discussed earlier, detection records for 
other species (outside those under direct consideration) might be helpful 
in identifying which time intervals contain visits that happened but did 
not yield detections of any focal species. For our analysis of the bumble 
bee data, we assumed that no visit occurred during a time interval if 
there were no corresponding species’ detections in that interval. By 
using records of specimens from other species (i.e., those from other data 
sets), or more information on survey procedures, one could conceivably 
reconstruct better visitation history for historical data sets, thereby 
enabling application of MSrange,visits, however, we did not do this here. 
Whether or not this is an appropriate assumption will depend on both 
the resolution of the spatial grid (and thus, the size of the “sites”), and 
also on the duration of the time intervals. Larger spatial grids and longer 

interval durations make it less plausible that a site received no visits. We 
note, however, that inferring non-detections is a common strategy used 
for unstructured data (van Strien et al., 2010, 2013a; Kamp et al., 2016; 
Outhwaite et al., 2019; Powney et al., 2019), but it may be less justified 
to implement if we lack data on the actual observer or the date of the 
collection. 

We also note that our conclusions about the suitability of the 
different models we have assessed should not be generalized beyond the 
parameters we have considered here, which we based on the empirical 
bumble bee data. For those examining other data sets, we believe that it 
is critical that researchers complement analyses of empirical data with 
analyses of simulated data using similar protocols to those that we 
provide, as validation of their methods. We expect our particular con
clusions regarding which parameters most impact inferences may not 
hold for data sets with different underlying structure. However, here we 
present a general approach that can be used as a potential roadmap 
when applying occupancy models to historical museum records. 

When dealing with opportunistic data and historical records, authors 
also have to either decide the spatial grain of sites or use the spatial grain 
of the observational data. For example, studies that use opportunistic 
data often use 1 km × 1 km grids (van Strien et al., 2010; Outhwaite 
et al., 2019; Powney et al., 2019; Outhwaite et al., 2020), as this is often 
the resolution of community science projects. Authors have also used a 
5 km × 5 km resolution in order to better align with the resolution of 
other spatial variables (Woodcock et al., 2016) or because the data use 
encompassed historical museum records whose geo-reference was not 
accurate enough to warrant a finer resolution (van Strien et al., 2019). 
However, it is unclear how using a spatial grain as coarse as 100 km ×
100 km might affect the trends observed. Here, we did not evaluate the 
effects of spatial or temporal resolution. Previous studies have found 
that increasing the spatial or temporal grain of the sites and time periods 
increases the estimates of occupancy (Hayes and Monfils, 2015; Steen
weg et al., 2018). A recent empirical study suggests that varying the 
spatial grain from 1 km × 1 km to 10 km × 10 km and the temporal grain 
from 1 year to to a 10 year closure period has no effect on the estimated 
trends in occupancy (Jönsson et al., 2021). 

Finally, we note that a critical component of the Soroye et al. (2020) 
study was to link changes in bumble bee occurrence at continental scales 
to changes in local climate. However, because Soroye et al. (2020) did 
not incorporate any climatic information into their occupancy models 
and, instead, looked for associations post-hoc, their inferences about the 
effects of climate depend on reliable species-specific trends. We have 
shown here that their parameterization may not produce reliable esti
mates of species-specific trends. Further, posthoc analyses of posterior 
means from single-species models, as implemented by Soroye et al. 
(2020), do not propagate uncertainty from species-level trends to com
munity level inferences which, for these data, leads to under-estimates 
in uncertainty associated with community-level trends. Understanding 
how climate change is impacting bumble bees worldwide is of para
mount importance, and we hope that our paper will provide an addi
tional impetus for continued work on this topic. 

5. Conclusions 

Based on our findings here, we suggest that analyses of historical 
change in occupancy should incorporate species-specific ranges and 
information about visitation history to sites, as in the multi-species 
framework we applied here. If such visitation history data are not 
available, then we suggest modelling only time intervals where at least 
one species was detected. Although multi-species occupancy models are 
designed to explicitly incorporate changes in detection, we advocate for 
more work identifying best practices for combining historical observa
tions into discrete intervals, so that the biases we find here can be 
avoided. While we provide revised estimates of changes in occupancy 
for bumble bees using multi-species models, refining these models to 
include environmental and species-level predictors will likely yield 
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further improved estimates. Including environmental and species-level 
predictors will tackle the open question whether climate change might 
be driving these changes collectively, or in a species-specific manner. 
Conservation practitioners have limited resources and so require accu
rate estimates of species’ declines, so that those resources can be 
correctly allocated to the species that need them most. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.biocon.2021.109141. 
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